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FINITE ELEMENT APPROXIMATION OF THE p-LAPLACIAN 

JOHN W. BARRETT AND W. B. LIU 

ABSTRACT. In this paper we consider the continuous piecewise linear finite el- 
ement approximation of the following problem: Given p E (1, oo), f, and 
g, find u such that 

-V. (VulP-2Vu)=f in C R2, u=g on0Q. 

The finite element approximation is defined over 2h, a union of regular tri- 
angles, yielding a polygonal approximation to Q. For sufficiently regular so- 
lutions u, achievable for a subclass of data f, g, and Q2, we prove optimal 
error bounds for this approximation in the norm W , q (nh), q = p for p < 2 
and q E [1, 2] for p > 2, under the additional assumption that 92h C Q2. 
Numerical results demonstrating these bounds are also presented. 

1. INTRODUCTION 

Let L2 be a bounded open set in R2 with a Lipschitz boundary aK2. Given 
p E (1, oc), f E L2(n), and g E Wl-l/PP (aQ), we consider the following 
problem: 

(So) Find u E WrVj P(K2) {v E W1' P(): v = g on O 2} such that 

j IVuIP-2(Vu, Vv)R2dQ = jfvdn Vv E W,' 

where Iv 2 = (v, V)R2 . Throughout we adopt the-standard notation Wm q(D) 
for Sobolev spaces on D with norm 1j j Ilwm q(D) and seminorm I - lWmvq(D) . We 
note that the seminorm I IW W1(D) and the norm 11 *lwq(D) are equivalent on 
PIl P (D)X 

Problem (Y) above is the weak formulation of the Dirichlet problem for 
the p-Laplacian 

(1.1) -V . (IVulp-2Vu) = f in Q, u = g onOAQ. 

The well-posedness of (s9) is well established, and one can refer to, for ex- 
ample, Glowinski and Marrocco [5] or the account in Ciarlet [4]. Of course, 
one can study more general boundary conditions and the presence of lower- 
order terms in the differential operator. However, for ease of exposition, we 
just consider (3d), although most of our results can be adapted to more general 
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problems. From Glowinski and Marrocco [5], or Ciarlet [4], ('9) is equivalent 
to the following minimization problem: 

(S) Find u E W. IP(Q) such that 

(1.2a) Ju (U) < Ju (V) VV E WI 'P(n), 
where 

(1.2b) J(v) - jIVvIP d - fv dQ. 

It is easily established that JQ(.) is strictly convex and continuous on W 'P (Q)n. 
Further, JQ(.) is Gateaux differentiable with 

(1.3) JA(u)()-j IVuIp-2(Vu, Vv)R2 dQ - j fv dQ Vv e W01 P(Q) 

Hence, there exists a unique solution to (S), and (dl) is equivalent to (39), 
its Euler equation. In addition, we have that 

(1.4) IIUIIW1iP(Q) < C[IIfII'f(7-,) + u1glhw- W'Ip()] 

The problem (39) occurs in many mathematical models of physical pro- 
cesses: nonlinear diffusion and filtration, see Philip [8]; power-law materials, 
see Atkinson and Champion [1]; and quasi-Newtonian flows, see Atkinson and 
Jones [2], for example. 

It is the purpose of this paper to analyze the finite element approximation of 
(6P). Let Qh be a polygonal approximation to Q defined by W = UTETh YZ 

where Th is a partitioning of Qh into a finite number of disjoint open regular 
triangles T, each of maximum diameter bounded above by h. In addition, for 
any two distinct triangles, their closures are either disjoint, or have a common 
vertex, or a common side. Let {Pj}J I be the vertices associated with the 
triangulation Th, where Pj has coordinates -(xj, yj). Throughout we assume 
that Pj E 0Qh implies Pj E aQ, and that Qh C Q. We note that, owing to the 
elliptic degeneracy of the p-Laplacian and the limited regularity of the solution 
u, see below, it is not a simple matter to extend the results in this paper to the 
case Qh 5 Q. Associated with Th is the finite-dimensional space 

(1.5) Sh {x E C(Qh): XIT is linear Vz E Th } c Wl P (Qh). 

Let 7rh: C(Qh) - Sh denote the interpolation operator such that for any v E 

C(Q), the interpolant 7(hV E Sh satisfies 7(hV(PJ) = v(P1), j = 1, ... , J. 
We recall the following standard approximation results. For m = 0 or 1, and 
forall ze Th,wehave(a)for qe[1, o], se[ [1, xo],provided W2s() 
Wm~q(T) 

(1.6a) Iv - 7hVIwmq(T) < ChV2(llq- s)h2-mIVIW2,'(T) Vv EW2s(T) 

and (b) for q > 2, 

(1.6b) IV - rhVIwm q(T) < Ch`IvIWsq(T) Vv E WI q(T). 

In (1.6a) we have noted the imbedding W2' 1(z) - C(t); see, for example, 
p. 300 in Kufner et al. [6]. 

The finite element approximation of (,9) that we wish to consider is: 
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('?/Sh) Find Uh E Sh such that 
g 

(1.7a) IVuhIP 2(Vuh, Vvh)R2dj2h fVh dh Vvh E Sh 
h Q 

where 

(1.7b) Soh {E Sh: X = 0 on ah} 

and 

(1.7c) Sh {x E Sh: x = gh on aQ^h, 

where gh E Sh is chosen to approximate the Dirichlet boundary data. If p > 2, 
then u E W PP(n) implies u E C(Q), and so we set gh -= 7rh . For the explicit 
error bounds derived in ?3 for p < 2, we assume that u E C(Q), and so once 
again set gh = LrhU. However, for the abstract analysis of this and the next 
section, gh can be arbitrary. The corresponding minimization problem is: 

(rh) Find uh E Sh such that 

(1.8) Jnh (U )? J(V ) VVh e Sh 

The well-posedness of (ph) = (&h) follows in an analogous way to that of (S) 
and (@), see Glowinski and Marrocco [5] or Ciarlet [4], and 

(1.9) IHu hIw, p(Qh) < C[IIf II 7(a) + g WI p(nh)]- 

We note that for p = 2, problem (,) reduces to the weak formulation of 
the linear Laplacian, and hence the regularity of u and the finite element error 
analysis are well established in this case. For p =$ 2, the regularity of u is less 
well established, as (1.1) is then a degenerate quasi-linear elliptic problem. It is 
well known, see Example 3.1 in ?3, that u has limited regularity for infinitely 
smooth data f, g, and n . Therefore, there is no benefit in considering higher- 
order finite element approximations, and hence our restriction to continuous 
piecewise linears from the outset. Lieberman [7] has proved that if aO E 
C A, then g is the trace of a function e C1 Y(2) for 8, y e (0, 1), and if 
f E L(.Q), then u E Cl a (n) for some a E (0, 1). However, for explicit 
finite element error bounds one requires global regularity results on the second, 
or maybe higher, derivatives of u. Unfortunately, such results are not available 
at present in the literature, but it is an active area of research worldwide. 

The following error bounds were proved in Glowinski and Marrocco [5] for 
the case h =2 and g _= 0: 

If u E Wo, lP(n) n W2'P(Q), then 

h 11 1'P { Chll(3-p) if p ? 2, 
(1.10) Iju - UhIw e(Q) < Ch1P-) if p > 2 

where throughout this paper C denotes a generic positive constant independent 
of h. Chow [3], employing an approach of Tyukhtin [9], improved these error 
bounds. He proved that 

(1.1 la) jju - UhIlnp( ) ? Cju - VhIgP V ( V Vvh E Soh if p < 2, 

and 

(1.1 lb) Iu -Uh u| WIP(n) ? C(II12huiwP(Q))Ip - 7hUII 2'i p(Q) ifp > 2, 
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and hence, if u E WlP(Q) n W2 P(Q), it follows form (1.6a) that 

(1.12) Ilu - uhIIW1 P(Q) < {Ch12l 
if p > 2~ 

{ 

Ch ~21 if p?>2, 

It is the purpose of this paper to prove optimal error bounds. The layout 
is as follows. In the next section we prove an abstract error bound for the 
approximation (ph) of (gP). In ?3 we study the case p E (1, 2) and prove 
an optimal W 'P error bound, that is, 0(h), provided that u E W31 l(Q) n 
C2,(2-P)/P(Q). Thus, this optimal error bound requires a stronger regularity 
assumption on u than that for the bound (1.12) in the case p < 2. In ?4 we 
study the case p > 2 and first show that the bound (1.12) for p > 2 can be 
achieved under the weaker regularity requirement u E 'l o?(Q) n W2,2(Q). 
Second, under the additional assumption If I > p > 0 a.e. in Q, we prove an 
optimal WI 4/3 error bound. We note that the above regularity requirements 
on u for these optimal error bounds are achievable for a subclass of data f, g, 
and Q. In ?5 we show that the error bounds derived in the previous sections 
hold for the fully practical scheme of employing numerical integration on the 
right-hand side of (1.7) if f is sufficiently smooth. Finally, we report on some 
numerical examples, which confirm these optimal error bounds. 

2. AN ABSTRACT ERROR BOUND 

We first prove a lemma, which is a generalization of Lemmas 5.1, 5.2, 5.3 
and 5.4 in Glowinski and Marrocco [5]. 

Lemma 2.1. For all p > 1 and 3 > 0 there exist positive constants Ci and C2 
such that for all A, q E 1R2, 54 q 

(2. 1a) I gjtp-24 _ Iqlp-2qI < Clg _ qI- 61g-a + lql)p-2+, 

and 

(2.1b) (141p24 - I I2 > - ? _ 
q12+- ( + q 

Proof. The approach is similar to that in Glowinski and Marrocco [5]. For all 
q rE R 2 54 q, let 

(2.2) GI (4 Cq) = It gtp-24 _ Iqlp-2ql/[lg _ qI-1~(gI: + IqI)p-2+,5]. 

We wish to prove that GI is bounded above. For any e > 0, GI is continuous 
on 

De-{4 q): q4-6 > 8 and (141 + IqI) < 1/8}. 

In addition, we note that for all 4, q E R2, 4 : q, 

(2.3) GI (4, q) 
= 

GI (q, 4), GI (AX, Aq) GI 
G(4, a) for all A E DR+, 

(2.3) GI(O, a) = 1 and GI(A4, Ah) GI (, a) if ATA = I, 

i.e., A is a rotation matrix. Therefore, without loss of generality we can take 
4 = el _ (1, O). Since 

(2.4) G1(el, ) -*1 as I -* oo, 

it remains to show that lim sup GI(eI, C) < o as IeI - -* 0. 
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Let q = (1 + p cos 0, p sin 0) . Then a simple calculation yields that 

(2.5) lim GI(el, = 
0 if 

3>0, 
P(5 I22-P{f1+p(p -2) Cos2 0}1/2 if O 

= 0. 
Hence the desired result (2. la). 

Similarly, we prove (2. ib). Let 
(2.6) G2('t, C)--1'q - _2+1(gl + IqI)p-2-1/(gIP2 - P-2, 4 -C)2 

From Glowinski and Marrocco [5] we have that 

(2.7) (14p-24 _ - lp-2q 4 _ R22 > 0 if q $ i. 

Therefore, we only need to prove that G2 is bounded above. In addition, the 
results (2.3) and (2.4) hold for G2 . 

Setting q = (1 + p cos 0, p sin 0), a simple calculation yields that 

(2.8) lim G2(ei, q) 0 if 
3>0, (28)OG 2=i 2P2{ + (p - 2)cos26}1- if = 0. 

Hence the desired result (2. lb). D 

The inequality (2.1a) was proved in Glowinski and Marrocco [5] for p E 
(1, 2] with 3 = 2-p, and for p > 2 with 3 = 0; similarly, (2.lb) was proved 
for p E (1, 2] with 3 = 0, and for p > 2 with 3 =p - 2. 

For p e (1, ox) and a >0 we define for any v E Wl P(Qh) 

(2.9) IVIlup,a)l + IVvI)P- eIVvIa d h, 

where u is the solution of (p9). We prove the following results for later use. 
Lemma 2.2. For p E (1, v] we have 

(2.1Oa) IVI1,/P) < IV IW,p(Qh) < C[IuIwlP(Qh) + IVIWlp(Qh)]P IVI(p,a), 

andfor p E [v, xo), 

(2.lOb) IVL~lnp(Qh) ? Vl(p,) < C[IutwlP(Qh) + IVIW1,p(Qh)]PlVIVlWp(h) 

Hence, (2.9) is well defined for v E W1 P(Qh). 
Proof. Setting w- (IVuI+IVvI)P- ,we first consider the case p E (1, a]. The 
left inequality in (2.10a) follows immediately from noting that w < IVvyP-0. 
Applying Holder's inequality, we have 

IVIOv1p(fh) {L wP/' [w w/VvI]P dQ } 
{ 5 ~~~~(C-P)/P 

< 

{kh,/> 

W P/(aP)ddQh IVI(P. 
a) 

r 5 ~~~~~(C-P)/P 

h(Vul + lVvl)P djh} IVI(pa). 
The right inequality in (2.10a) follows by noting that for all y E [0, xo) there 
exists Cy > 0 such that la + bly ? Cy(laly + Ibly) for all a, b E JR. 

The inequalities (2.1 Ob) can be proved in a similar manner. E 

The next theorem is the natural generalization of the result in ?7 of Chow 
[3]. We use the minimization property of uh and Lemma 2.1, whereas Chow 
uses the Glowinski and Marrocco version of Lemma 2.1. 
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Theorem 2.1. Let u and uh be the unique solutions of (Y) _ (a) and (.yAh) = 

(ah), respectively. Then for any 31 E [0, 2) and 2 > 0, and any Vh E Sg, it 
follows that 

(2.11) Iu-uhI(p,2+62) < CIU-_hV(ph2-l). 

Proof. We have for any vh E Sh that 

g 

J~h(V) -JJhh(u) = j J~(u + S(V -U))(v -U)ds 

= fa [Jh (U + S(Vh U))([U + S(VhU)]-U) 
(2.12a) ds 

-JQh(u)([u + S(Vh -u)] - 

+ Jnh(u)(vh - U) 

=-A(vh) + J5 (U)(Vh _ U)- 

where from (1.3) 

(2.12b) 

A(V h) j| [L:IV(u + S(Vh - U))lP 2 
O h 

x V(u + s(Vh - U)) -_ VUIP2VU]V(Vh - u)} dQh] ds. 

From (2.12b) and (2.la) we have that 

IA(vh)l < C s | (|V[u + S(Vh - u)]l + |Vu|)p-2+ 

(2-13) o Qb x IV(V - U)12-1 dQ2h ds 

< Clu - Vhj1@ 2-61 ) a 

where we have noted that for all vI, v2, and s E [0, 1] 

(2.14) Is(jVvlj + IVv21) < jV[v1 +sv2]j + JVvIj < 2(jVvlj + IVV21). 

From (2.12b), (2.lb), and (2.14) we have that 

(1A(vh)t ? C2 s 
1+J2h (fV[u + s(vh _ u)]l + IVuI)P-2+32 

x IV(Vh _ U)12+ 2d2h ds 

> C|U-Vh |(P, 2+,52)- 

From (1.8) and (2.12) we have that for all vh E 5h 

(2.16) A(uh) + Jah(u)(uh - u) - Jn(hu) - JQh(u) < Jnh(vh) -J^h(u) 

-A(vh) + J5(U)(Vh _ U). 

Therefore, it follows from (2.16), (2.13), and (2.15) that 

(2.17) |u-uhI(p,2+32) < Cfu- 2-61) + aJQ(u)(vh-uh). 
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As Qh is Lipschitz, Wh C Q and X = vh - uh E SO^, we can extend X to be 
zero on Q\Q . Denoting this extension by %, we have that % E W] lP(Q) and 
hence from (3Y) that J., (u)(x) -J(u)(%) = 0. Therefore, the desired result 
(2.1 1) follows from (2.17). o 

3. ERROR BOUNDS FOR P E (1, 2) 

Assuming that u E W2, 1 (K2), which implies that u E C(Q), we can set 
gh = 7rh U in (1. 7c). Choosing 2 = O in (2.1 1) and noting (2. 1 Oa), (1.4), (1.9), 
and (1.6a), we have for all 31 E [0, 2) and for all vh E Sh 

(3.1) u - uhi2 ,,p(Qh) < Clu - Uhj(P,2) < Clu - Vh(P2) 

Choosing 31 = 2 -p and noting (2.1Oa) yield that for all vh E Sh 

(3.2) iu - uhWi, p(nh) ? CWu - vhi(p) ?< ~ p-vhiP(nh). 

From a Poincare inequality we have for all q E [1, oo), for all v E W q (Q), 
and for all vh, wh E Sg that 

(3.3) liv - Wh l Wq(Qh) < Cliv - VhIIWlq(Qh) + Civ - Wh IWq(Qh). 

Hence, from (3.2) with vh = 7(hU, (3.3), and (1.6a) we have that 

(3.4a) iiU - uhiiwlp(Qh) < CIIU - 7rhUiiW1,P(h) + CIU - 7hUiW1,p(Qh) 

(3.4b) < ChP12 if u E W2,p(K) 

the generalization of the results (1.1 la) and (1.12), for p < 2, of Chow [3] to 
the case of nonhomogeneous boundary data g and Kh c Q. Below we prove 
an optimal W1 ,P error bound for sufficiently regular u, based on choosing 
J, = 0 in (3.1). 

Lemma 3.1. Let a E (-1, 0). If v E W2, 1 (Q) , then 

(3.5) IV I, 'xVV 12 dKQ < xo. 

Proof. We have that 

j IvIVI12 dx dy _ j(sign(v)Iv I+1)xvx dx dy 

- {jl; sign(v)Iv I+"vx dy - sign(v)IvI+lvx, dx dy} 

and a similar identity with v, replaced by vy. The desired result (3.5) then 
follows from the imbedding W2, 1(Q) c* C(Q) and the trace inequality 
11 ' IILI(a) < CH * IIW",'(n). El 

Theorem 3.1. If u E W3 1(Q) n C2 a(Q), with a > 0, then it follows that 

(3.6a) iiu - Uh112i,lp(nh) < C[h2 + hPO+c0] 

and hence, if u E W3, 1 (Q) n C2, (2-p)/p(), then 

(3.6b) iiu - UhIIWlp(nh) < Ch. 
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Proof. As u E C2 a(Q), we have from (1.6a) that for all z e Th and for all 
(x, y) E T 

(3.7) IV(u - 7(hU)(X , Y)I < ChIH[u]ILo(T) < Ch H[u](x, y) + Chl+, 

where H[u]-= Iux I + Iuxy I + Iuyy I . 
It is easy to check that the function q(t) = (a + t)P-2t2 with a > 0 is 

increasing on R+ and hence that q(ltl+ t21)C 2[q(|tli ) + q(It21)] for all tl, t2 e 
JR. Therefore, we have from (3.1) with 51 = 0 and vh= 7hU, (3.7), and the 
above that 

U - u~lW1P(Qh) ? Cj(IVUI + IV(u - 7rhU)I)7 |V(U-7rhU)IdQ 

< Ch2 j(Vul + ChH[u])P-2(H[u])2 dQh 
(3.8) Qh 

+ Ch2(l+a) L(Vuh + Chl+a)P-2 dQh 
Qh 

< ChP(l+a) + Ch2 (IVUI)p-2 (H[u])2 dQh. 
Qh 

Setting vI u, and v2 uY,, we have from (3.5), as vI, v2 E W2 1(Q), 
that 

j (IvuI)p-2(H[u])2 djh < Cj (v2 + v2)(P-2)/2(IVvi 2 + IVV2 12) dQh 
Q39) h Qh 

< C j V[ll Ip l|VV1 12 + Iv2IPp2IVV212] dQh < X. 
Qh 

Combining (3.8) and (3.9) yields the result (3.6a) and hence (3.6b) with 
11 * lWIp(Qh) replaced by 1 - IWIp(Qh). The results (3.6) then follow by noting 
(3.3), (1.6a), and that u E W3, 1(e) implies u E W2 P(Q). E 

We note that one can prove (3.6b) under alternative regularity requirements 
on u, e.g., u E W3,P(Q). However, we will not exploit this here. We now 
show that the regularity requirements on u in Theorem 3.1 hold for a model 
problem. 

Example 3.1. We consider a radially symmetric version of problem (6p). Let 
Q ={r: r < 1}, f(x, y) _ F(r), f E Lq(Q) for q > 2, and g be constant, 
where r-(x2+y2)1/2. Then 

(3.1Oa) u(x, y) U(r)- sign(Z(t))IZ(t)l/(P-l) dt + g, 

(3. 1 Ob) ~ ~ Ul U-(Iz (2-p)1(p- l)Zf)1(p _ 1 ) (3.l1Ob)U" -1 

and 

(3. lOc) U"' -= C1 sign(Z)IZI(3-2p)/(p-1)(Z')2 + C2IZ (2-P)/(P-1Z" 

for some constants Ci, where 

(3. 1 Od) z(x, y)- Z(r)-( (IU'lP-2U')(r) = - tF(t) d t. 
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It is a simple matter to deduce from (3.1 Od) that 

(3.1la) f E C Q) X z E Q) Vq E [O, 1] 

and 

(3.1 lb) f E Wl q(Q) for q > 1 =? Z E W2' 1(2) =Z E C(Q). 

It follows from (3. lOb) and (3.1 la) that 

(3.12a) P E (1, 3] and f E C?'f(Q) for f E [0, 1] u E C2,0(Q), 

P E [2[, 2) and f E Co 0 (Q) for f E [0, (2 - p)/(p - 1)] 

>U E C2,0fi 

and from (3. lOc), (3.1 lb), and Lemma 3.1 that 

(3.12c) P E (1, 2) and f E W1, (Q) for q > 1 ?i U E W3I (K2) 

4. ERROR BOUNDS FOR p > 2 

Let gh = 7(hU in (1.7c). From (2.11) with 51 = 0 and 52 =p - 2, (2.lOb), 
(1.4), (1.9), and (1.6b) it follows that 

(4.1) u - uhIPwl p(h) < ?u-U < C|U - 7hUI(p,2) < CIU-U Wlp(-h, 

and hence it follows from (3.3) and (1.6a) that 

(4.2a) I|u - u IIwlp(Qh) < C||u - 7rhUIIWlp(Qh) + CIu - 7 /p (Qh) 

(4.2b) < Ch21p if uE W2,p(e) 

the generalization of the results (1.1 lb) and (1.12), for p > 2, of Chow [3] to 
the case of nonhomogeneous boundary data g and Qh C Q. Alternatively, 
assuming u E W1' o(Q), we have from (2.11) with 3i = 2-s, s E [1, 2], and 
52=p-2 and (1.6b) that 

(4.3) |u - uh iP ( <) ?u - uhl(p,p) < CIU - 7rhUl(p,s) < CIU - 7rhUlw1,s(uh). 

In addition, we note from (1.6b) that for u E W 1 '(Q) 

(4.4) IIU - 7rhUIIW1,q(Qh) < CIU - 7rhUII s(Uh) if q > s. 

Hence, it follows from (4.3), (3.3), (4.4), and (1.6a) that if u E W1'0(Q) n 
W2, s(), s E [1, 2], then 

(4.5a) I|u - uhIjwl.p(Qh) < CIIU - 7rhUIIW1,P(h) + CIU - 7rhUISW1,s(^h) 

(4.5b) < CIIU - 7rhUIIW$P1,s(Qh) < Chs/P. 

Choosing f _ 1 and g _ 0 in Example 3.1 yields that u(x, y) 
C(1 - rPI(P-')), and so u E W2,s(Q) only if s < 2(p - l)/(p - 2). Therefore, 
in general u rarely belongs to W2 P (Q) in order for (4.2b) to guarantee that 
the error converges at least at the rate of h21p in W1 ,P. However, from (4.5b) 
we see that this rate is ensured under the far weaker regularity requirement of 
u E WI 'O(Q) n W2'2(Q), and this is satisfied by the example above. 

Below we prove error bounds in weaker norms, 11- *IW 1, q(h) with q E [1 , p). 
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Lemma 4.1. For all t e [2, p] and q e [1, t] for which 

(4.6a) j VU-(P-t)q/(t-q) dQ < oo if q E [1, t) 

and 

(4.6b) IVUI-(P-t) E LO9(Q) if q = tj 

we have for u E W1' ?(2) n W2 s(Q) with s E [1, 2] that 

(4.7) jju - Uhj1 lq(Qh) < Chs/t. 
Proof. Choosing 91 = 2 - s and 32 = t - 2 in (2.11), noting (4.3) and (4.6), 
and applying a H6lder inequality, we obtain that 

(4.8) |u- u |WI, q (n) < |- @t < CIU - 7hUl(pos) < CIU - 7hUISW1,s(Qh)- 

The desired result (4.7) then follows from (4.8), (1.6a), (3.3), and (4.4). 0 

To improve on the hs/P convergence rate for the error in (4.5b), we wish 
to take t E [2, p), which gives rise to the restrictions (4.6) on u; that is, we 
require {(x, y) E Q: IVu(x, Y)j = 01 to have zero measure and a growth con- 
dition on jVuI-1 . From inspection we see that the weakest growth restriction 
on IVuI-I for a fixed t is needed when q = 1. We now look for sufficient 
conditions on u and the data f in order for these restrictions to hold. 

Lemma 4.2. If u E W1'0(92) n W2,s(Q2), s E [1, ox], then there exists an 
M e Ls(K2) such that 

(4.9) If I < MIVulp-2 a.e. in Q2. 
Proof. Let Vu (VI, v2) E [Wl s(f?)]2 and v = (v2+v2)1/2 = IVuI E L??(Q). 
As IVi/vI + 1v2/vI is bounded and Vv = (V Vv + v2Vv2)/v, it follows that 
v E W1 s(Q2). In addition, we have that 

f - -div(vP2v1, VP2v2) 

(4.10-v2{[(v)x + (V2)yJ + (p - 2)[vlvx + V2VyJ/V} 

Hence the desired result (4.9). 0 

Under the assumption that {(x, y) E Q: f(x, y) = 0} has zero measure, the 
inequality (4.9), for example, yields for t > 2 and 1 < q < t < p that 

(4.11) XIVUI-(p-t)q1(t-q)dn < I M/ If I](p-t)q1[(p-2)(t-q)1 M . 

Therefore, with M E Ls(Q), for a given s E [1, o0], and imposing a growth 
condition on IfI-I, one can choose appropriate t and q so that (4.6a) and 
hence (4.7) hold. Below we give an example of such a result. 

Theorem 4.1. Let u E Wlco?(Q) n W2,s(Q), s e [1, x]. If Ifl-Y E LI(Q) 
for some y E (0, o0), or if If I E L??(Q) we set y = 00, then we have for 
q E [l, p) that 

(4.12a) 1ju - U'IIW ~q(Q{) _ 
Ch2lt if? > 2, (4.12a) ~ ~ ~ ? Chs/t if SE[1,2), 
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where 

(4.12b) t = max{2, q[(s + y)p + (p - 2)ys]/[(s + y)q + (p - 2)ys]} 
Proof. First a simple calculation yields that t satisfying (4.12b) is such that 
t E [2, p) and t > q. Setting 

tj =_ q(p - t)/[(p - 2)(t - q)], 

we conclude that t < ys/(s + y) and hence s < y(s - aj), and if y is finite then 
t < s. Therefore, from (4.1 1), the assumptions on f and Holder's inequality 
we have 

(413 Vu-(p-t)q/(t-q) dQ < j(MIf I) - ) dQ 

(4. 1 3) M(S (s-q)/s < (IMs dn If I ,Is/(s-11)dn) < c. 

Similarly, (4.13) holds if y is infinite, as t < s. The desired result (4.12a) then 
follows from (4.6a) and (4.7). 0 

We note that for fixed q, y, and s the right-hand side of (4.12b) tends to 
max{(2, q[(s + y) + ys]/ys} as p -* oc. Therefore, the error bound (4.12a) 
does not degenerate as p -* oc, unlike (4.2b) and (4.5b). 

Corollary 4.1. Let u E W1 00(Q) n W2, s(Q), s E [1, 0o]. Suppose that there 
exists a constant p > 0 such that If I > p a.e. in Q; then for q E [1, p) we 
have that 

{Ch 2/t if s?>2, 
(4.14a flu uOwl 4(a) < {chslt if S E [1, 2), 

where 

(4.14b) t = max{2, q[p + (p - 2)s]/[q + (p - 2)s]}. 

Hence, we have that for q = 2s/(1 + s) 

XChs2 if s E [1, 2). 
Proof. The result (4.14a,b) follows directly from setting y = 00 in (4.12). 
The result (4.14c) then follows from (4.14a,b) by noting that t = 2 if q= 
2s/(1+s). ? 

5. NUMERICAL EXAMPLES 

The standard Galerkin method analyzed in the previous sections requires the 
term fAh fVh dnih for all vh E Soh to be integrated exactly. This is difficult in 
practice, and it is computationally more convenient to consider a scheme where 
numerical integration is applied to this term. With jh - UTETh Y and {ai}3 
being the vertices of a triangle r, we define the quadrature rule 

(5.1) QT(v) _ imeas(r) Zv(ai) j7hVdT 

3=1 d 
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approximating f, v dT for v E C(T). Then, for v, w E C(Qh), we set 

(5.2) (V, w)h _ E Q((VW) J 7th(vw)dQh 
TE Th h 

as an approximation to fah VW dh . 

The fully practical finite element approximation of (Y) that we wish to 
consider is: 

(?h) Find Uh E Sh such that 

(5.3) Lh IVuhP 2(Vzi, VVh) 2 d?h - (f, vE Vvh e Sh. 
Qh 

The corresponding minimization problem is: 
(&h) Find uh e Sh such that g 

(5.4a) .JQh(U) < ?Ja(Vh) VVh ESh 

where 

(5.4b) Joh (Vh) f Vvh IP dQh - (f vh. 
P Q 

The well-posedness of h) = (@h) follows in an analogous way to that of (3) 
and (f), and 

(5.5) II,2hIIW1 p(Qh) < C[IIf II 'o(Qh) + hIW p(ah)]. 

We now bound the error -h u. First we have the analogue of Theorem 2.1. 

Theorem 5.1. Let u and Uh be the unique solutions of (Y) (d) and (9h) 

(& h), respectively. Let f E W1 ?? (Q) n W2, 2(Q). Then for any di E [0, 2) and 
62> 0, and any vh E Sh, it follows that 

(5.6) Iu - fh, 2+32) < Cju- Vh(p,2-6s) + Ch2I vh I - 

Proof. The proof follows exactly that of Theorem 2.1 with fjh and JQh instead 
of uh and Joh in (2.16). However, whereas J(u)(vh - uh) 0, we now have 
for all vh E Sh 

.J~h(u)(v -h h) -Ja(U)(Vh - jh) 

(5.7a) L (V h )d Q u 

L-j f(vh _h)dQh+(f, Vh - h)h 
Qh 

and 

|5b L| f(h _ h) d h (f vh _ fjh)h ) [C(Vh _ f h - 

< Ch If(v -*)IW2, I(ah) < Ch2IvhI-h (h) 

provided f e W1 00(n) n W2 2(a). Hence, we obtain the desired result 
(5.6). o 
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In particular, assuming u E W2 l(Q) if p < 2, we have for vh =- gh = 7hU 
that for any oi E [0, 2) and J2 > 0 

(5.8) U- fI(p 2+92) < CIU - rh UI(p,2-51) + Ch2. 

Hence, it is a simple matter to check that the results of the previous sections 
hold for jh as well as uh if f E W1'o(n) n W2'2(Q). We note that this 
constraint on f can be weakened and is imposed here for ease of exposition 
only. 

We now report on some numerical results with the fully practical approxima- 
tion (5.3). For computational ease we took n to be the square [0, 1] x [0, 1 ]. 
This was partitioned into uniform right-angled triangles by dividing it first into 
equal squares of sides of length 1/N and then into triangles by inserting the 
SW-NE diagonals. We imposed homogeneous Neumann data on the sides x = 0 
and y = 0 and Dirichlet data on the sides x = 1 and y = 1. Therefore, the 
problem can be viewed as a Dirichlet problem over [-1 1 ] x [-1, 1], and so 
our error analysis applies directly. 

We computed our approximation (5.3) by solving the equivalent minimiza- 
tion problem (5.4). We used a Polak-Ribiere conjugate gradient method, which 
worked reasonably well for the values of p reported here. We did not exper- 
iment with the augmented Lagrangian approach advocated by Glowinski and 
Marrocco [5], but this conjugate gradient approach was far superior to the gra- 
dient method suggested by Wei [10]. 

For our test problems we consider solutions of the radially symmetric prob- 
lem, Example 3.1, extended to the unit square. In the first three examples we 
took for various values of p and y 

(5.9) fF(r)_r' and 

u U(r) (p - 1)[1/(o + 2)]l/(P-1)[l - r(a+P)A(P-)]/(o +p). 

In all the examples, f is sufficiently smooth, so that the error bounds for uh 
in the previous sections hold for 'h as well. 

Example 5.1. This is (5.9) with a = 0 and p = 1.5. It follows from (3.12) that 
U E W3, 1 (Q) n C2, 1 (a), and so from Theorem 3.1 we expect 0(h) convergence 
in WI 1.5(e). This is certainly achieved by inspecting Table 5.1, where we 
adopt the notation 0.8233(-3) -0.8233 x 10-3. In fact, jh is converging to 
u at the rate 0(h2) in L??(n), and there is a superconvergence for 7rhU - jh 
in WI'l(Q) and W1'P(n). 5 

TABLE 5.1 

N | 
|Zh11A||W1 1 (Q) 1 U~ U-h 11 W1,P(Q) | 

o rh aa I N IIh U - 11Iwl( n IhU - i'h wp() 1I7hU - I-Q 

10 0.8233(-3) 0.4823(-3) 0.8150(-3) 

20 0.2061(-3) 0.1207(-3) 0.2034(-3) 

40 0.5196(-4) 0.3043(-4) 0.5109(-4) 

80 0.1235(-4) 0.723(-5) 0.1263(-4) 
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Example 5.2. This is (5.9) with a = 0 andp = 4. It follows from Example 
3.1 and ?4 that u E W2 s(n), with s < 3, and from (4.14c) we expect O(h) 
convergence in W, 1(Q). From Table 5.2 we see this is achieved. In fact, 
TrhU - fh exhibits superconvergence in Wi, 1(Q). 

TABLE 5.2 

N 11lrhU - fhIIWl,(,) II7hU - h 
() IIhU - , |hIILL(n) 

10 0.1789(-2) 0.4486(-2) 0.3790(-2) 

20 0.5049(-3) 0.2519(-2) 0.1585(-2) 

40 0.1376(-3) 0.1414(-2) 0.6493(-3) 

80 0.3659(-4) 0.7936(-3) 0.2625(-3) 

Example 5.3. Here we take (5.9) with a = 7 and p = 4. It follows from 
Example 3.1 that u E W2'00(Q). From (4.12), as s = oc and y < 2/7, we 
have with q = 1 that t > 32/ 11. Therefore, for all e > 0 we have that 

(5.10) IIU - jhj 1W1 I(Q) < Ch(l -e)/16. 

We note that a sharper bound, h(l4- )/l9, can be obtained by noting that for this 
model problem I U'(r) I > Cr8/3 and applying (4.6) and (4.7) directly. From Ta- 
ble 5.3 we see that the above bounds are pessimistic. In fact, we have O(h2) con- 
vergence in L??(n) and 7hU - fh exhibits superconvergence in Wi, 1 (Q). 

TABLE 5.3 

N I|lrhU - iih1W, llI(a) l7rhU -~ 1 WP(Q) I17rhU - hILO(Q) 
10 0.8153(-3) 0.5988(-2) 0.5014(-2) 

20 0.2164(-2) 0.1931(-2) 0.1235(-2) 

40 0.5918(-3) 0.8893(-3) 0.2989(-3) 

80 0.1429(-3) 0.1952(-3) 0.6449(-4) 

Finally we consider an example for p > 2, where {(x, y) E n: f(x, y) = 0} 
does not have zero measure. 

Example 5.4. We take 
10 for r < a, 

(5.1 la) F(r) - t 4P-1(r - a)(3P-4)[2 + (a/r) - 3p] for r> a 

and 

r0 for r < a, 
(5.1 lb) U(r) = 

1(r-a)4 forr>a 
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with a = 0.3 and p = 4. At present the only global error estimate we have for 
this case is the result (4.5b). Clearly, this is pessimistic from inspecting Table 
5.4, where once again we see O(h2) convergence in L??(L) and 7(hU - uk is 
superconvergent in W1, I(Q) . We note that the maximum error did not occur 
inthedisc {r: r<0.3}. 0 

TABLE 5.4 

N |Uh U- 1 WI I h () Uh I1 W1,p(U) II7XhuuIILh(Q ) 

10 0.5879(-1) 0.4653(-l) 0.3080(-l) 

20 0.1553(-1) 0.1182(-1) 0.7930(-2) 

40 0.4332(-2) 0.3118(-2) 0.1992(-2) 

80 0.1139(-2) 0.1706(-2) 0.4923(-3) 
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